If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=1x^2+10x+9
We move all terms to the left:
0-(1x^2+10x+9)=0
We add all the numbers together, and all the variables
-(1x^2+10x+9)=0
We get rid of parentheses
-1x^2-10x-9=0
a = -1; b = -10; c = -9;
Δ = b2-4ac
Δ = -102-4·(-1)·(-9)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8}{2*-1}=\frac{2}{-2} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8}{2*-1}=\frac{18}{-2} =-9 $
| (n/6)-(n/8)=3 | | 5x²-40=0 | | s*7-40=114 | | x2+3=51 | | (4x+9)(4x−9)=0 | | (x/281)*5=63 | | 63=(x/281)*0,4 | | 63=(x/281)*0.4 | | 63=(x/281)*40 | | (3a/2)+4=13 | | X²-5x-24=0 | | 3a/2+4=13 | | X+4/7x-14=x-3/7x-26 | | 31-2x=17 | | (x/281.16)*40=63.44 | | (x/281,16)*40=6 | | x=9+3x-37 | | (x/281)*40=63 | | 4x+15+x+35=90 | | x158=360 | | 63*9*14÷x=98 | | 2(t-2)/6-2=t+2/6 | | 3x/7+1=29 | | 3x-5+2=15 | | s^+4s-21=0 | | 7x+17-49x=2 | | 11r-18=4r+17 | | 11r-18=4r+7 | | 5(x-15)=2(x+12) | | 7-(x-4)=-3x+2x+2 | | 4x+20=2x+32 | | 2x^2+2x-4=176 |